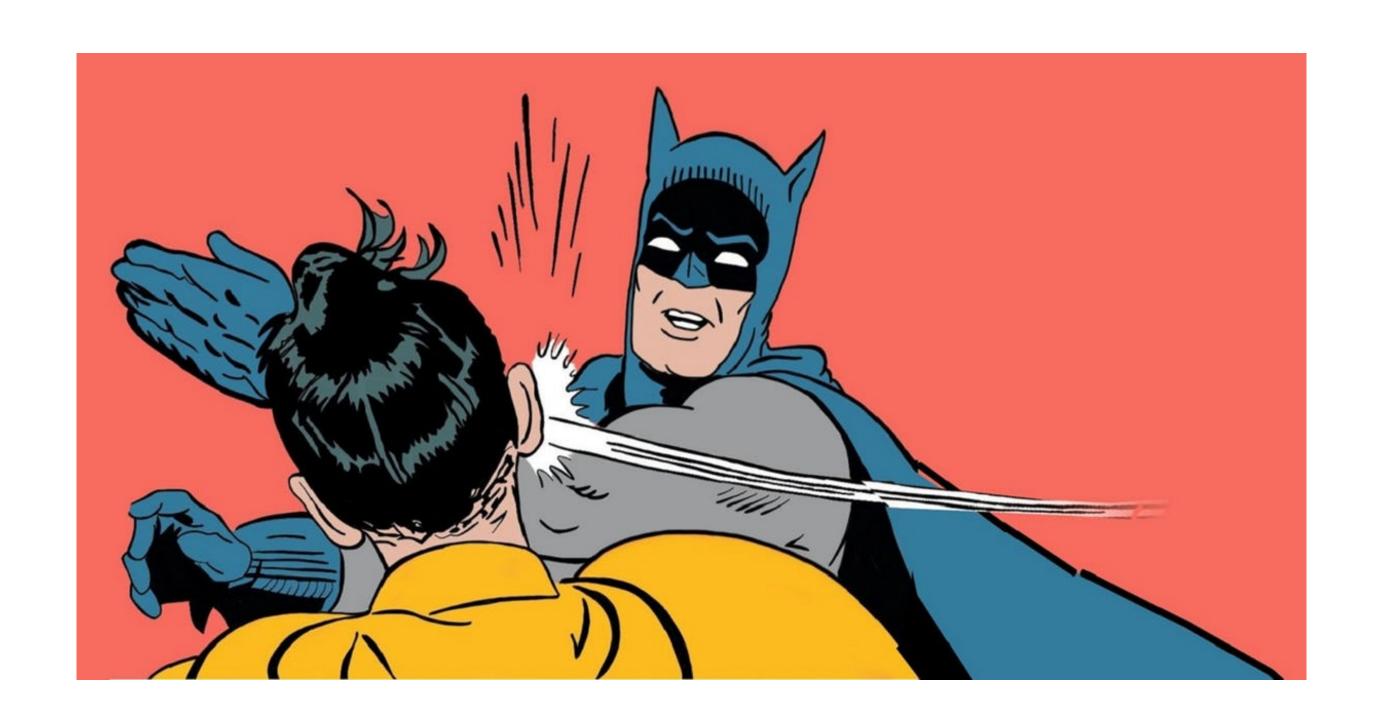
.la?!? the fascinating history and current state of IDNs!!

Hello


I'm @KTamas

I'm here to talk about IDNs (Internationalized Domain Names)

DNS

- Translates www.facebook.com to 31.13.84.36
- Is limited to just 37 characters
- Letters, numbers, dashes
- Yup, that's it
- More importantly, 63 characters for each part of the domain (separated by the .)
- 255 characters total, with the dots

37 characters should be enough for ev-

Why should we care about IDNs?

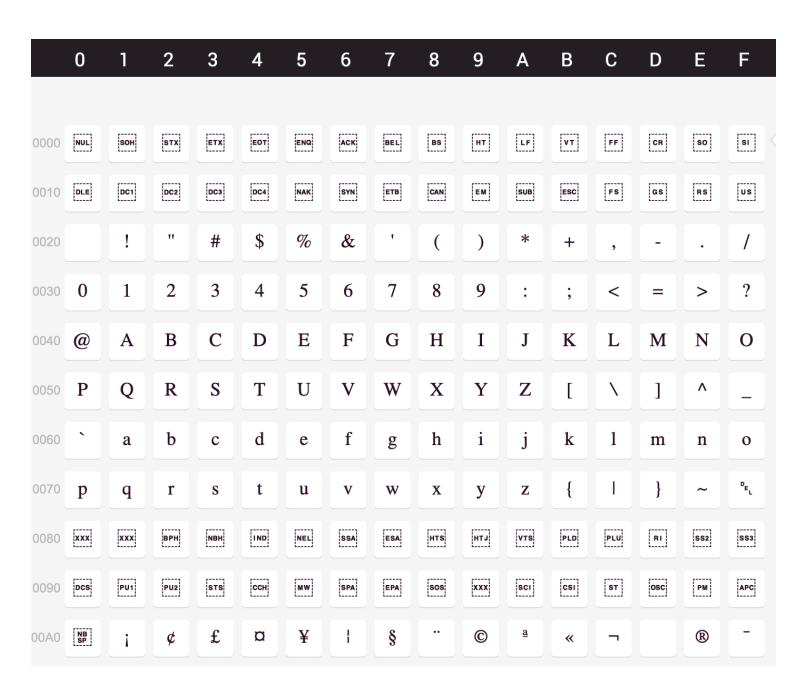
- Not everyone can read the Latin alphabet
- People have the right to use their own languages everywhere
- There are a lot of languages using the Latin alphabet that use more than 26 characters

•

History, part 1

• Mid 80s: DNS

• 1989: World Wide Web


• 1991: Mosaic

you know the rest

Detour: Unicode

- A big table (array) of characters, ideograms, emojis etc.
- Over 1 million code points
- Usually written as U+XXXX (where XXXX is in hex, and sometimes it's more than 4 characters)

Unicode-table.com

History, part 2

- 1987: Work on Unicode starts
- 1991: Unicode 1.0
- 1993: UTF-8 variable-width encoding for the masses
- 1995: <meta charset=""> in Netscape
- 1996: Unicode support in Netscape
- 2001: Windows XP, the first fully-Unicode consumer Windows
- 2010: Emojis in Unicode 6.0

History, part 3

- Today we're at Unicode 12.1
- UTF-8 is everywhere
- You don't have to manually set your encoding in your browser

Back to the mid-90s

- Most of the web is in English
- ISO-8859 aka Latin 1 or find your own encoding
- Which is what people did and it was a mess
- UTF-8 mostly fixed this
- But we need something else for domains: maybe UTF-5?

The case for variable-width encodings: UTF-8

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxxxxxx			
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	U+10000	U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

1996: The journey begins with UTF-5

- by Martin Dürst
- Everything needs to fit into existing constraints
- 37 characters to pick from, 63 characters for each part, 255 characters in total
- That's not a lot, so let's get creative

is.s.u-tokyo.ac.jp

information.science.university-oftokyo.academia.japan

情報.り.東大.学.日本

jouhou.ri.toudai.gaku.nihon

情報.り.東大.学.日本

U+60c5U+5831.U+7406.U+6771U+5927.U+5b66.U+65e5U+672c

M0C5L831.N406.M771L927.LB66. M5E5M72C.i

UTF-5

- The same(ish), but with only 32 characters (2^5)
- Example domain: is.s.u-tokyo.ac.jp
- Which means: information.science.university-of-tokyo.academia.japan
- In Japanese: 情報. り. 東大. 学. 日本
- Transliterated: jouhou.ri.toudai.gaku.nihon
- Unicode: U+60c5U+5831.U+7406.U+6771U+5927.U+5b66.U+65e5U+672c
- UTF-5: M0C5L831.N406.M771L927.LB66.M5E5M72C.i

UTF-5, Illustrated

情	報	•	り	•	東	大	•	学	•	日	本
U+60c5	U+5831		U+7406		U+6771	U+5927	•	U+5b66		U+65e5	U+ <mark>6</mark> 72c
M0C5	L831	•	N406	•	M771	L927	•	LB66		M5E5	M72C .i

- U+60c5 becomes M0c5 (6 becomes M), U+5831 becomes L831 (5 becomes L)...
- Variable-length: U+0234 becomes I34 etc.

Nibb	le Value	Initial	Subsequent
Hex	Binary		
0	0000	G	0
1	0001	H	1
2	0010	I	2
3	0011	J	3
4	0100	K	4
5	0101	L	5
6	0110	M	6
7	0111	N	7
8	1000	0	8
9	1001	P	9
Α	1010	Q	A
В	1011	R	В
С	1100	S	С
D	1101	T	D
E	1110	U	E
F	1111	V	F

UTF-5 is a good start, but...

- It's limited
- ~15 ideographs
- ~21 Hebrew or Arabic characters
- Can't mix with latin characters (those would have to be encoded as well)
- It's a good start though, so let's get to work

1996-2003

- 1998: Working Group was formed
- 1999: Several test implementations
- 1999: Taiwan: .gongsi aka .公司 aka .com; 200k sold
- 1999: India: Tamil versions of .com/.net/.org/.edu
- 2001: ICANN IDN Committee
- 2003: RFC 3454, RFC 3490, RFC 3491 and RFC 3492!

RFC-3492 aka Punycode

- UTF-5 on steroids
- xn--whatever-adsf7u347q34.com

RFC-3492 aka Punycode

- Why xn--?
- ACE (ASCII Compatible Encoding)
- "Hey, punycode domain incoming" to the Browser

RFC-3492 aka Punycode

- Punycode is not pretty, but very efficient
- Let's assume a domain is likely in one language
- Those language's code points are usually next to each other
- Let's separate the characters into two groups: the OG 37 and the rest
- Take the lowest code point from the rest, encode it
- For the rest, just encode the distance between them
- Encode the location of the character as well within the whole string

Examples!

- bücher.example -> xn--bcher-kva.example
- **a**.la -> xn--ls8h.la
- ② .net -> xn--n3h.net
- hello .com -> xn--hello-my73dha.com

Examples!

• apple.co -> xn--le-6kc8da.xn--n1af

Examples!

- apple.co->xn--le-6kc8da.xn--n1af
- 'a', 'p', 'c', 'o' are Cyrillic homographs
- We have a problem

IDN homograph attacks

- Huge problem
- Used for phishing etc.
- Because of this, browsers don't always display the IDN, but punycode instead
- Complex algorithms decide when to display what
- On mobile it's even worse since it's common to hide the URL in the UI

Where are we at right now?

- Several dozen TLDs
- Emoji domains available for 14 TLDs (like .ws)
- 7.5 million IDN domains, 2% of all domains
- IDN emails are a thing but support is still scarce

Thank you

- Twitter: <u>@KTamas</u>
- This presentation: http://iwidns.ktamas.com/ (http://iwidns.ktamas.com/ (http://iwidns.ktamas.com/ (http://iwidns.ktamas.com/ (http://iwidns.ktamas.com/ (http://iwidns.ktamas.com/ (http://iwidns.ktamas.com/)
- More resources, links, references on the next two slides

Resources, links

- Original UTF-5 Draft
- <u>IDNs Wikipedia</u>
- A presentation from 2004 with lots of details
- <u>iDNS project/APNG commission (didn't have time for this)</u>
- The best explanation for Punycode
- RFC 3492
- Variable-width encoding
- IDN history

Resources, links

- List of TLDs, including Internationalized ones
- Emoji domains Wikipedia
- <u>Punycoder convert from/to Punycode</u>
- Register emoji domains
- IDN World Report